Back to Search Start Over

A relative-error inertial-relaxed inexact projective splitting algorithm

Authors :
Alves, M. Marques
Geremia, Marina
Marcavillaca, Raul T.
Publication Year :
2020

Abstract

For solving structured monotone inclusion problems involving the sum of finitely many maximal monotone operators, we propose and study a relative-error inertial-relaxed inexact projective splitting algorithm. The proposed algorithm benefits from a combination of inertial and relaxation effects, which are both controlled by parameters within a certain range. We propose sufficient conditions on these parameters and study the interplay between them in order to guarantee weak convergence of sequences generated by our algorithm. Additionally, the proposed algorithm also benefits from inexact subproblem solution within a relative-error criterion. Illustrative numerical experiments on LASSO problems indicate some improvement when compared with previous (noninertial and exact) versions of projective splitting.<br />Comment: some typos corrected. Accepted for publication in Journal of Convex Analysis

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2002.07878
Document Type :
Working Paper