Back to Search
Start Over
Motivic & Arithmetic probability of a semistable elliptic surface with a Weierstrass torsion section
- Publication Year :
- 2020
-
Abstract
- We prove new sharp asymptotic for counting the semistable elliptic curves with two marked Weierstrass points at $\infty$ and $0$ and also the cases where $0$ is a 2-torsion or a 3-torsion marked Weierstrass point over $\mathbb{F}_q(t)$ by the bounded height of discriminant $\Delta(X)$. We consider the motivic probabilities over any basefield $K$ with $\text{char}(K) \neq 2,3$ of picking a nonsingular semistable elliptic surface over $\mathbb{P}^{1}$ with two marked Weierstrass sections at $\infty$ and $0$ such that marked Weierstrass section at $0$ is 2-torsion or 3-torsion. In the end, we formulate an analogous heuristics on $\mathcal{Z}_{\mathbb{Q}}(\mathcal{B})$ for the ratio of the semistable elliptic curves with a marked rational 2-torsion or 3-torsion Weierstrass point at $0$ out of all semistable elliptic curves with a marked rational Weierstrass points at $0$ over $\mathbb{Q}$ by the bounded height of discriminant $\Delta$ through the global fields analogy.<br />Comment: This paper is superseded by a newer paper, entitled "\'Etale cohomological stability of the moduli space of stable elliptic surfaces" arXiv:2207.02496 (by O. Banerjee, J. Park, and J. Schmitt)
- Subjects :
- Mathematics - Number Theory
Mathematics - Algebraic Geometry
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2002.06527
- Document Type :
- Working Paper