Back to Search Start Over

Imaging the breakdown of ohmic transport in graphene

Authors :
Jenkins, A.
Baumann, S.
Zhou, H.
Meynell, S. A.
Yang, D.
Watanabe, K.
Taniguchi, T.
Lucas, A.
Young, A. F.
Jayich, A. C. Bleszynski
Publication Year :
2020

Abstract

Ohm's law describes the proportionality of current density and electric field. In solid-state conductors, Ohm's law emerges due to electron scattering processes that relax the electrical current. Here, we use nitrogen-vacancy center magnetometry to directly image the local breakdown of Ohm's law in a narrow constriction fabricated in a high mobility graphene monolayer. Ohmic flow is visible at room temperature as current concentration on the constriction edges, with flow profiles entirely determined by sample geometry. However, as the temperature is lowered below 200 K, the current concentrates near the constriction center. The change in the flow pattern is consistent with a crossover from diffusive to viscous electron transport dominated by electron-electron scattering processes that do not relax current.<br />Comment: Fixed colorscale label Fig. 3b

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2002.05065
Document Type :
Working Paper