Back to Search Start Over

Solving Some Affine Equations over Finite Fields

Authors :
Mesnager, Sihem
Kim, Kwang Ho
Choe, Jong Hyok
Lee, Dok Nam
Publication Year :
2020

Abstract

Let $l$ and $k$ be two integers such that $l|k$. Define $T_l^k(X):=X+X^{p^l}+\cdots+X^{p^{l(k/l-2)}}+X^{p^{l(k/l-1)}}$ and $S_l^k(X):=X-X^{p^l}+\cdots+(-1)^{(k/l-1)}X^{p^{l(k/l-1)}}$, where $p$ is any prime. This paper gives explicit representations of all solutions in $\GF{p^n}$ to the affine equations $T_l^{k}(X)=a$ and $S_l^{k}(X)=a$, $a\in \GF{p^n}$. For the case $p=2$ that was solved very recently in \cite{MKCL2019}, the result of this paper reveals another solution.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2002.04912
Document Type :
Working Paper