Back to Search
Start Over
Lookahead: A Far-Sighted Alternative of Magnitude-based Pruning
- Publication Year :
- 2020
-
Abstract
- Magnitude-based pruning is one of the simplest methods for pruning neural networks. Despite its simplicity, magnitude-based pruning and its variants demonstrated remarkable performances for pruning modern architectures. Based on the observation that magnitude-based pruning indeed minimizes the Frobenius distortion of a linear operator corresponding to a single layer, we develop a simple pruning method, coined lookahead pruning, by extending the single layer optimization to a multi-layer optimization. Our experimental results demonstrate that the proposed method consistently outperforms magnitude-based pruning on various networks, including VGG and ResNet, particularly in the high-sparsity regime. See https://github.com/alinlab/lookahead_pruning for codes.<br />Comment: ICLR 2020, camera ready
- Subjects :
- Computer Science - Machine Learning
Statistics - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2002.04809
- Document Type :
- Working Paper