Back to Search Start Over

Lookahead: A Far-Sighted Alternative of Magnitude-based Pruning

Authors :
Park, Sejun
Lee, Jaeho
Mo, Sangwoo
Shin, Jinwoo
Publication Year :
2020

Abstract

Magnitude-based pruning is one of the simplest methods for pruning neural networks. Despite its simplicity, magnitude-based pruning and its variants demonstrated remarkable performances for pruning modern architectures. Based on the observation that magnitude-based pruning indeed minimizes the Frobenius distortion of a linear operator corresponding to a single layer, we develop a simple pruning method, coined lookahead pruning, by extending the single layer optimization to a multi-layer optimization. Our experimental results demonstrate that the proposed method consistently outperforms magnitude-based pruning on various networks, including VGG and ResNet, particularly in the high-sparsity regime. See https://github.com/alinlab/lookahead_pruning for codes.<br />Comment: ICLR 2020, camera ready

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2002.04809
Document Type :
Working Paper