Back to Search
Start Over
Evaluating approval-based multiwinner voting in terms of robustness to noise
- Publication Year :
- 2020
-
Abstract
- Approval-based multiwinner voting rules have recently received much attention in the Computational Social Choice literature. Such rules aggregate approval ballots and determine a winning committee of alternatives. To assess effectiveness, we propose to employ new noise models that are specifically tailored for approval votes and committees. These models take as input a ground truth committee and return random approval votes to be thought of as noisy estimates of the ground truth. A minimum robustness requirement for an approval-based multiwinner voting rule is to return the ground truth when applied to profiles with sufficiently many noisy votes. Our results indicate that approval-based multiwinner voting is always robust to reasonable noise. We further refine this finding by presenting a hierarchy of rules in terms of how robust to noise they are.<br />Comment: Preliminary version appeared in IJCAI 2020
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2002.01776
- Document Type :
- Working Paper