Back to Search
Start Over
Analysis of the Rigorous Coupled Wave Approach for p-polarized light in gratings
- Publication Year :
- 2020
-
Abstract
- We study the convergence properties of the two-dimensional Rigorous Coupled Wave Approach (RCWA) for p-polarized monochromatic incident light. The RCWA is a semi-analytical numerical method that is widely used to solve the boundary-value problem of scattering by a grating. The approach requires the expansion of all electromagnetic field phasors and the relative permittivity as Fourier series in the spatial variable along the direction of the periodicity of the grating. In the direction perpendicular to the grating periodicity, the domain is discretized into thin slices and the actual relative permittivity is replaced by an approximation. The approximate relative permittivity is chosen so that the solution of the Maxwell equations in each slice can be computed without further approximation. Thus, there is error due to the approximate relative permittivity as well as the trucation of the Fourier series. We show that the RCWA embodies a Galerkin scheme for a perturbed problem, and then we use tools from the Finite Element Method to show that the method converges with increasing number of retained Fourier modes and finer approximations of the relative permittivity. Numerical examples illustrate our analysis, and suggest further work.
- Subjects :
- Mathematics - Numerical Analysis
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2001.09866
- Document Type :
- Working Paper