Back to Search Start Over

On the approximation of D.I.Y. water rocket dynamics including air drag

Authors :
Fischer, Laura
Günther, Thomas
Herzig, Linda
Jarzina, Tobias
Klinker, Frank
Knipper, Sabine
Schürmann, Franz-Georg
Wollek, Marvin
Source :
Int. J. of Sci. Research in Mathematical and Statistical Sciences 6 (2019) no. 6, 1-13
Publication Year :
2020

Abstract

If you want to get accurate predictions for the motion of water and air propelled D.I.Y rockets, neglecting air resistance is not an option. But the theoretical analysis including air drag leads to a system of differential equations which can only be solved numerically. We propose an approximation which simply works by the estimate of a definite integral and which is even feasible for undergraduate physics courses. The results only slightly deviate from the reference data (received by the Runge-Kutta method). The motion is divided into several flight phases that are discussed separately and the resulting equations are solved by analytic and numeric methods. The different results from the flight phases are collected and are compared to data that has been achieved by well explained and documented experiments. Furthermore, we theoretically estimate the rocket's drag coefficient. The result is confirmed by a wind tunnel experiment.<br />Comment: We suggest the reader to choose this preprint version because the journal text contains several formatting errors. (v2: some typos have been corrected as well as one address)

Details

Database :
arXiv
Journal :
Int. J. of Sci. Research in Mathematical and Statistical Sciences 6 (2019) no. 6, 1-13
Publication Type :
Report
Accession number :
edsarx.2001.08828
Document Type :
Working Paper