Back to Search
Start Over
On a class of Lebesgue-Ljunggren-Nagell type equations
- Publication Year :
- 2020
-
Abstract
- Given odd, coprime integers $a$, $b$ ($a>0$), we consider the Diophantine equation $ax^2+b^{2l}=4y^n$, $x, y\in\Bbb Z$, $l \in \Bbb N$, $n$ odd prime, $\gcd(x,y)=1$. We completely solve the above Diophantine equation for $a\in\{7,11,19,43,67,163\}$, and $b$ a power of an odd prime, under the conditions $2^{n-1}b^l\not\equiv \pm 1(\mod a)$ and $\gcd(n,b)=1$. For other square-free integers $a>3$ and $b$ a power of an odd prime, we prove that the above Diophantine equation has no solutions for all integers $x$, $y$ with ($\gcd(x,y)=1$), $l\in\mathbb{N}$ and all odd primes $n>3$, satisfying $2^{n-1}b^l\not\equiv \pm 1(\mod a)$, $\gcd(n,b)=1$, and $\gcd(n,h(-a))=1$, where $h(-a)$ denotes the class number of the imaginary quadratic field $\mathbb Q(\sqrt{-a})$.<br />Comment: accepted for publication in Journal of Number Theory
- Subjects :
- Mathematics - Number Theory
11D61, 11B39
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2001.04736
- Document Type :
- Working Paper