Back to Search Start Over

Stratified disc wind models for the AGN broad-line region: ultraviolet, optical and X-ray properties

Authors :
Matthews, James H.
Knigge, Christian
Higginbottom, Nick
Long, Knox S.
Sim, Stuart A.
Mangham, Samuel W.
Parkinson, Edward J.
Hewitt, Henrietta A.
Publication Year :
2020

Abstract

The origin, geometry and kinematics of the broad line region (BLR) gas in quasars and active galactic nuclei (AGN) are uncertain. We demonstrate that clumpy biconical disc winds illuminated by an AGN continuum can produce BLR-like spectra. We first use a simple toy model to illustrate that disc winds make quite good BLR candidates, because they are self-shielded flows and can cover a large portion of the ionizing flux-density ($\phi_H$-$n_H$) plane. We then conduct Monte Carlo radiative transfer and photoionization calculations, which fully account for self-shielding and multiple scattering in a non-spherical geometry. The emergent model spectra show broad emission lines with equivalent widths and line ratios comparable to those observed in AGN, provided that the wind has a volume filling factor of $f_V\lesssim0.1$. Similar emission line spectra are produced for a variety of wind geometries (polar or equatorial) and for launch radii that differ by an order of magnitude. The line emission arises almost exclusively from plasma travelling below the escape velocity, implying that `failed winds' are important BLR candidates. The behaviour of a line-emitting wind (and possibly any `smooth flow' BLR model) is similar to that of the locally optimally-emitting cloud (LOC) model originally proposed by Baldwin et al (1995), except that the gradients in ionization state and temperature are large-scale and continuous, rather than within or between distinct clouds. Our models also produce UV absorption lines and X-ray absorption features, and the stratified ionization structure can partially explain the different classes of broad absorption line quasars.<br />Comment: Accepted to MNRAS. 20 pages, 13 figures plus appendix. Supplementary plots, some simulation data and demo notebooks can be found at https://github.com/jhmatthews/windy-blr-2020

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2001.03625
Document Type :
Working Paper
Full Text :
https://doi.org/10.1093/mnras/staa136