Back to Search
Start Over
Waves over Curved Bottom: The Method of Composite Conformal Mapping
- Source :
- Journal of Experimental and Theoretical Physics, 2020, Vol. 130, No. 5, pp. 797-808
- Publication Year :
- 2019
-
Abstract
- A compact and efficient numerical method is described for studying plane flows of an ideal fluid with a smooth free boundary over a curved and nonuniformly moving bottom. Exact equations of motion in terms of the so-called conformal variables are used. In addition to the previously known applications for shear flows with constant (including zero) vorticity, here a generalization is made to the case of potential flows in uniformly rotating coordinate systems, where centrifugal and Coriolis forces are added to the gravity force. A brief review is given of previous results obtained by this method in a number of physically interesting problems such as modeling of tsunami waves caused by the movement of nonuniform bottom, the dynamics of Bragg (gap) solitons over a spatially periodic bottom profile, the Fermi-Pasta-Ulam (FPU) recurrence phenomenon for waves in a finite pool, the formation of anomalous waves in an opposing nonuniform current, and the propagation of a solitary wave in a shear current and its runup on a depth difference. In addition, a number of new numerical results are presented concerning the nonlinear dynamics of a free boundary in closed rotating containers partially filled with a fluid -- centrifuges of complex shape. In this case, the equations of motion differ in some essential details from those of $x$-periodic systems.<br />Comment: 10 pages, 15 figures, in English, published version
- Subjects :
- Physics - Fluid Dynamics
Nonlinear Sciences - Pattern Formation and Solitons
Subjects
Details
- Language :
- English
- Database :
- arXiv
- Journal :
- Journal of Experimental and Theoretical Physics, 2020, Vol. 130, No. 5, pp. 797-808
- Publication Type :
- Report
- Accession number :
- edsarx.1912.09203
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1134/S1063776120040081