Back to Search
Start Over
Structured backward errors in linearizations
- Publication Year :
- 2019
-
Abstract
- A standard approach to compute the roots of a univariate polynomial is to compute the eigenvalues of an associated \emph{confederate} matrix instead, such as, for instance the companion or comrade matrix. The eigenvalues of the confederate matrix can be computed by Francis's QR algorithm. Unfortunately, even though the QR algorithm is provably backward stable, mapping the errors back to the original polynomial coefficients can still lead to huge errors. However, the latter statement assumes the use of a non-structure exploiting QR algorithm. In [J. Aurentz et al., Fast and backward stable computation of roots of polynomials, SIAM J. Matrix Anal. Appl., 36(3), 2015] it was shown that a structure exploiting QR algorithm for companion matrices leads to a structured backward error on the companion matrix. The proof relied on decomposing the error into two parts: a part related to the recurrence coefficients of the basis (monomial basis in that case) and a part linked to the coefficients of the original polynomial. In this article we prove that the analysis can be extended to other classes of comrade matrices. We first provide an alternative backward stability proof in the monomial basis using structured QR algorithms; our new point of view shows more explicitly how a structured, decoupled error on the confederate matrix gets mapped to the associated polynomial coefficients. This insight reveals which properties must be preserved by a structure exploiting QR algorithm to end up with a backward stable algorithm. We will show that the previously formulated companion analysis fits in this framework and we will analyze in more detail Jacobi polynomials (Comrade matrices) and Chebyshev polynomials (Colleague matrices).
- Subjects :
- Mathematics - Numerical Analysis
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1912.04157
- Document Type :
- Working Paper