Back to Search
Start Over
$(\phi,\tau)$-modules diff\'erentiels et repr\'esentations potentiellement semi-stables
- Publication Year :
- 2019
-
Abstract
- Soit $K$ un corps $p$-adique et soit $V$ une repr\'esentation $p$-adique de $\mathcal{G}_K = \mathrm{Gal}(\bar{K}/K)$. La surconvergence des $(\phi,\tau)$-modules nous permet d'attacher \`a $V$ un $\phi$-module diff\'erentiel \`a connexion $D_{\tau,\mathrm{rig}}^\dagger(V)$ sur l'anneau de Robba $\mathbf{B}_{\tau,\mathrm{rig},K}^\dagger$. On montre dans cet article comment retrouver les invariants $D_{\mathrm{cris}}(V)$ et $D_{\mathrm{st}}(V)$ \`a partir de $D_{\tau,\mathrm{rig}}^\dagger(V)$, et comment caract\'eriser les repr\'esentations potentiellement semi-stables, ainsi que celles de $E$-hauteur finie, \`a partir de la connexion. Let $K$ be a $p$-adic field and let $V$ be a $p$-adic representation of $\mathcal{G}_K=\mathrm{Gal}(\bar{K}/K)$. The overconvergence of $(\phi,\tau)$-modules allows us to attach to $V$ a differential $\phi$-module $D_{\tau,\mathrm{rig}}^\dagger(V)$ on the Robba ring $\mathbf{B}_{\tau,\mathrm{rig},K}^\dagger$ that comes equipped with a connection. We show in this paper how to recover the invariants $D_{\mathrm{cris}}(V)$ and $D_{\mathrm{st}}(V)$ from $D_{\tau,\mathrm{rig}}^\dagger(V)$, and give a characterization of both potentially semi-stable representations of $\mathcal{G}_K$ and finite $E$-height representations in terms of the connection operator.<br />Comment: in French
- Subjects :
- Mathematics - Number Theory
Subjects
Details
- Language :
- French
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1912.02104
- Document Type :
- Working Paper