Back to Search Start Over

Strain-induced spin-nematic state and nematic susceptibility arising from $2\times2$ Fe clusters in KFe$_{0.8}$Ag$_{1.2}$Te$_2$

Authors :
Song, Yu
Yuan, Dongsheng
Lu, Xingye
Xu, Zhijun
Bourret-Courchesne, Edith
Birgeneau, Robert J.
Source :
Phys. Rev. Lett. 123, 247205 (2019)
Publication Year :
2019

Abstract

Spin nematics break spin-rotational symmetry while maintaining time-reversal symmetry, analogous to liquid crystal nematics that break spatial rotational symmetry while maintaining translational symmetry. Although several candidate spin nematics have been proposed, the identification and characterization of such a state remain challenging because the spin-nematic order parameter does not couple directly to experimental probes. KFe$_{0.8}$Ag$_{1.2}$Te$_2$ (K$_5$Fe$_4$Ag$_6$Te$_{10}$, KFAT) is a local-moment magnet consisting of well-separated 2$\times$2 Fe clusters, and in its ground state the clusters order magnetically, breaking both spin-rotational and time-reversal symmetries. Using uniform magnetic susceptibility and neutron scattering measurements we find a small strain induces sizable spin anisotropy in the paramagnetic state of KFAT, manifestly breaking spin-rotational symmetry while retaining time-reversal symmetry, resulting in a strain-induced spin-nematic state in which the $2\times2$ clusters act as the spin analogue of molecules in a liquid crystal nematic. The strain-induced spin anisotropy in KFAT allows us to probe its nematic susceptibility, revealing a divergent-like increase upon cooling, indicating the ordered ground state is driven by a spin-orbital entangled nematic order parameter.<br />Comment: accepted for publication in Physical Review Letters

Details

Database :
arXiv
Journal :
Phys. Rev. Lett. 123, 247205 (2019)
Publication Type :
Report
Accession number :
edsarx.1911.06492
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevLett.123.247205