Back to Search
Start Over
Efficient Irreversible Monte Carlo samplers
- Source :
- Journal of Chemical Theory and Computation 2020 16 (4), 2124-2138
- Publication Year :
- 2019
-
Abstract
- We present here two irreversible Markov chain Monte Carlo algorithms for general discrete state systems, one of the algorithms is based on the random-scan Gibbs sampler for discrete states and the other on its improved version, the Metropolized-Gibbs sampler. The algorithms we present incorporate the lifting framework with skewed detailed balance condition and construct irreversible Markov chains that satisfy the balance condition. We have applied our algorithms to 1D 4-state Potts model. The integrated autocorrelation times for magnetisation and energy density indicate a reduction of the dynamical scaling exponent from $z \approx 1$ to $z \approx 1/2$. In addition, we have generalized an irreversible Metropolis-Hastings algorithm with skewed detailed balance, initially introduced by Turitsyn et al. (2011) for the mean field Ising model, to be now readily applicable to classical spin systems in general; application to 1D 4-state Potts model indicate a square root reduction of the mixing time at high temperatures.<br />Comment: The document consists of 45 pages and 32 figures
- Subjects :
- Condensed Matter - Statistical Mechanics
Subjects
Details
- Database :
- arXiv
- Journal :
- Journal of Chemical Theory and Computation 2020 16 (4), 2124-2138
- Publication Type :
- Report
- Accession number :
- edsarx.1911.00883
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1021/acs.jctc.9b01135