Back to Search
Start Over
The periodic integral orbits of polynomial recursions with integer coefficients
- Source :
- Sarajevo Journal of Mathematics, 18, 2022, 107-125
- Publication Year :
- 2019
-
Abstract
- We show that polynomial recursions $x_{n+1}=x_{n}^{m}-k$ where $k,m$ are integers and $m$ is positive have no nontrivial periodic integral orbits for $m\geq3$. If $m=2$ then the recursion has integral two-cycles for infinitely many values of $k$ but no higher period orbits. We also show that these statements are true for all quadratic recursions.<br />Comment: 19 pages, 2 figures
- Subjects :
- Mathematics - Dynamical Systems
39A23
Subjects
Details
- Database :
- arXiv
- Journal :
- Sarajevo Journal of Mathematics, 18, 2022, 107-125
- Publication Type :
- Report
- Accession number :
- edsarx.1911.00606
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.5644/SJM.18.01.08