Back to Search Start Over

A remark on the enumeration of rooted labeled trees

Authors :
Sokal, Alan D.
Source :
Discrete Mathematics 343, 111865 (July 2020)
Publication Year :
2019

Abstract

Two decades ago, Chauve, Dulucq and Guibert showed that the number of rooted trees on the vertex set $[n+1]$ in which exactly $k$ children of the root are lower-numbered than the root is $\binom{n}{k} \, n^{n-k}$. Here I give a simpler proof of this result.<br />Comment: LaTex2e, 9 pages. Version 2 contains a Note Added with a quick and elegant proof due to Jiang Zeng. To be published in Discrete Mathematics

Details

Database :
arXiv
Journal :
Discrete Mathematics 343, 111865 (July 2020)
Publication Type :
Report
Accession number :
edsarx.1910.14519
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.disc.2020.111865