Back to Search Start Over

Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support

Authors :
Zhou, Yuan
Yang, Hongseok
Teh, Yee Whye
Rainforth, Tom
Publication Year :
2019

Abstract

Universal probabilistic programming systems (PPSs) provide a powerful framework for specifying rich probabilistic models. They further attempt to automate the process of drawing inferences from these models, but doing this successfully is severely hampered by the wide range of non--standard models they can express. As a result, although one can specify complex models in a universal PPS, the provided inference engines often fall far short of what is required. In particular, we show that they produce surprisingly unsatisfactory performance for models where the support varies between executions, often doing no better than importance sampling from the prior. To address this, we introduce a new inference framework: Divide, Conquer, and Combine, which remains efficient for such models, and show how it can be implemented as an automated and generic PPS inference engine. We empirically demonstrate substantial performance improvements over existing approaches on three examples.<br />Comment: Published at the 37th International Conference on Machine Learning (ICML 2020)

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1910.13324
Document Type :
Working Paper