Back to Search
Start Over
Explicit zero density estimate for the Riemann zeta-function near the critical line
- Publication Year :
- 2019
-
Abstract
- In 1946, A. Selberg proved $N(\sigma,T) \ll T^{1-\frac{1}{4} \left(\sigma-\frac{1}{2}\right)} \log{T}$ where $N(\sigma,T)$ is the number of nontrivial zeros $\rho$ of the Riemann zeta-function with $\Re\{\rho\}>\sigma$ and $0<\Im\{\rho\}\leq T$. We provide an explicit version of this estimate, together with an explicit approximate functional equation and an explicit upper bound for the second power moment of the zeta-function on the critical line.<br />Comment: 35 pages, 1 figure, 3 tables
- Subjects :
- Mathematics - Number Theory
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1910.08274
- Document Type :
- Working Paper