Back to Search
Start Over
Photoluminescence mapping and time-domain thermo-photoluminescence for rapid imaging and measurement of thermal conductivity of boron arsenide
- Publication Year :
- 2019
-
Abstract
- Cubic boron arsenide (BAs) is attracting greater attention due to the recent experimental demonstration of ultrahigh thermal conductivity \k{appa} above 1000 W/mK. However, its bandgap has not been settled and a simple yet effective method to probe its crystal quality is missing. Furthermore, traditional \k{appa} measurement methods are destructive and time consuming, thus they cannot meet the urgent demand for fast screening of high \k{appa} materials. After we experimentally established 1.82 eV as the indirect bandgap of BAs and observed room-temperature band-edge photoluminescence, we developed two new optical techniques that can provide rapid and non-destructive characterization of \k{appa} with little sample preparation: photoluminescence mapping (PL-mapping) and time-domain thermo-photoluminescence (TDTP). PL-mapping provides nearly real-time image of crystal quality and \k{appa} over mm-sized crystal surfaces; while TDTP allows us to pick up any spot on the sample surface and measure its \k{appa} using nanosecond laser pulses. These new techniques reveal that the apparent single crystals are not only non-uniform in \k{appa}, but also are made of domains of very distinct \k{appa}. Because PL-mapping and TDTP are based on the band-edge PL and its dependence on temperature, they can be applied to other semiconductors, thus paving the way for rapid identification and development of high-\k{appa} semiconducting materials.
- Subjects :
- Condensed Matter - Materials Science
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1910.07149
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.mtphys.2020.100194