Back to Search Start Over

Optimal principal component Analysis of STEM XEDS spectrum images

Authors :
Potapov, Pavel
Lubk, Axel
Source :
Advanced Structural and Chemical Imaging (2019) 5:4
Publication Year :
2019

Abstract

STEM XEDS spectrum images can be drastically denoised by application of the principal component analysis (PCA). This paper looks inside the PCA workflow step by step on an example of a complex semiconductor structure consisting of a number of different phases. Typical problems distorting the principal components decomposition are highlighted and solutions for the successful PCA are described. Particular attention is paid to the optimal truncation of principal components in the course of reconstructing denoised data. A novel accurate and robust method, which overperforms the existing truncation methods is suggested for the first time and described in details.<br />Comment: 21 pages, 14 figures

Details

Database :
arXiv
Journal :
Advanced Structural and Chemical Imaging (2019) 5:4
Publication Type :
Report
Accession number :
edsarx.1910.06781
Document Type :
Working Paper
Full Text :
https://doi.org/10.1186/s40679-019-0066-0