Back to Search
Start Over
On the Price of Independence for Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal
- Publication Year :
- 2019
-
Abstract
- Let $vc(G)$, $fvs(G)$ and $oct(G)$, respectively, denote the size of a minimum vertex cover, minimum feedback vertex set and minimum odd cycle transversal in a graph $G$. One can ask, when looking for these sets in a graph, how much bigger might they be if we require that they are independent; that is, what is the price of independence? If $G$ has a vertex cover, feedback vertex set or odd cycle transversal that is an independent set, then we let $ivc(G)$, $ifvs(G)$ or $ioct(G)$, respectively, denote the minimum size of such a set. Similar to a recent study on the price of connectivity (Hartinger et al. EuJC 2016), we investigate for which graphs $H$ the values of $ivc(G)$, $ifvs(G)$ and $ioct(G)$ are bounded in terms of $vc(G)$, $fvs(G)$ and $oct(G)$, respectively, when the graph $G$ belongs to the class of $H$-free graphs. We find complete classifications for vertex cover and feedback vertex set and an almost complete classification for odd cycle transversal (subject to three non-equivalent open cases). We also investigate for which graphs $H$ the values of $ivc(G)$, $ifvs(G)$ and $ioct(G)$ are equal to $vc(G)$, $fvs(G)$ and $oct(G)$, respectively, when the graph $G$ belongs to the class of $H$-free graphs. We find a complete classification for vertex cover and almost complete classifications for feedback vertex set (subject to one open case) and odd cycle transversal (subject to three open cases).<br />Comment: 25 pages, 10 figures
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1910.05254
- Document Type :
- Working Paper