Back to Search
Start Over
Fine-Grained Analysis of Propaganda in News Articles
- Source :
- EMNLP-2019
- Publication Year :
- 2019
-
Abstract
- Propaganda aims at influencing people's mindset with the purpose of advancing a specific agenda. Previous work has addressed propaganda detection at the document level, typically labelling all articles from a propagandistic news outlet as propaganda. Such noisy gold labels inevitably affect the quality of any learning system trained on them. A further issue with most existing systems is the lack of explainability. To overcome these limitations, we propose a novel task: performing fine-grained analysis of texts by detecting all fragments that contain propaganda techniques as well as their type. In particular, we create a corpus of news articles manually annotated at the fragment level with eighteen propaganda techniques and we propose a suitable evaluation measure. We further design a novel multi-granularity neural network, and we show that it outperforms several strong BERT-based baselines.
Details
- Database :
- arXiv
- Journal :
- EMNLP-2019
- Publication Type :
- Report
- Accession number :
- edsarx.1910.02517
- Document Type :
- Working Paper