Back to Search Start Over

Fine-Grained Analysis of Propaganda in News Articles

Authors :
Martino, Giovanni Da San
Yu, Seunghak
Barrón-Cedeño, Alberto
Petrov, Rostislav
Nakov, Preslav
Source :
EMNLP-2019
Publication Year :
2019

Abstract

Propaganda aims at influencing people's mindset with the purpose of advancing a specific agenda. Previous work has addressed propaganda detection at the document level, typically labelling all articles from a propagandistic news outlet as propaganda. Such noisy gold labels inevitably affect the quality of any learning system trained on them. A further issue with most existing systems is the lack of explainability. To overcome these limitations, we propose a novel task: performing fine-grained analysis of texts by detecting all fragments that contain propaganda techniques as well as their type. In particular, we create a corpus of news articles manually annotated at the fragment level with eighteen propaganda techniques and we propose a suitable evaluation measure. We further design a novel multi-granularity neural network, and we show that it outperforms several strong BERT-based baselines.

Details

Database :
arXiv
Journal :
EMNLP-2019
Publication Type :
Report
Accession number :
edsarx.1910.02517
Document Type :
Working Paper