Back to Search
Start Over
Design Theory and some Forbidden Configurations
- Publication Year :
- 2019
-
Abstract
- In this paper we relate t-designs to a forbidden configuration problem in extremal set theory. Let 1_t 0_l denote a column of t 1's on top of l 0's. We assume t>l. Let q. (1_t 0_l) denote the (t+l)xq matrix consisting of t rows of q 1's and l rows of q 0's. We consider extremal problems for matrices avoiding certain submatrices. Let A be a (0,1)-matrix forbidding any (t+l)x(\lambda+2) submatrix (\lambda+2). (1_t 0_l) . Assume A is m-rowed and only columns of sum t+1,t+2,... ,m-l are allowed to be repeated. Assume that A has the maximum number of columns subject to the given restrictions. Assume m is sufficiently large. Then A has each column of sum 0,1,... ,t and m-l+1,m-l+2,..., m exactly once and, given the appropriate divisibility condition, the columns of sum t+1 correspond to a t-design with block size t+1 and parameter \lambda and there are no other columns. The proof derives a basic upper bound on the number of columns of A by a pigeonhole argument and then a careful argument, for large m, reduces the bound by a substantial amount down to the value given by design based constructions. We extend in a few directions.<br />Comment: arXiv admin note: text overlap with arXiv:1909.07580
- Subjects :
- Mathematics - Combinatorics
05D05
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1909.11602
- Document Type :
- Working Paper