Back to Search Start Over

Anharmonic Thermodynamics of Vacancies Using a Neural Network Potential

Authors :
Bochkarev, Anton S.
van Roekeghem, Ambroise
Mossa, Stefano
Mingo, Natalio
Publication Year :
2019

Abstract

Lattice anharmonicity is thought to strongly affect vacancy concentrations in metals at high temperatures. It is however non-trivial to account for this effect directly using density functional theory (DFT). Here we develop a deep neural network potential for aluminum that overcomes the limitations inherent to DFT, and we use it to obtain accurate anharmonic vacancy formation free energies as a function of temperature. While confirming the important role of anharmonicity at high temperatures, the calculation unveils a markedly nonlinear behavior of the vacancy formation entropy and shows that the vacancy formation free energy only violates Arrhenius law at temperatures above 600 K, in contrast with previous DFT calculations.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1909.10253
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevMaterials.3.093803