Back to Search
Start Over
On the Role of Flexibility in Linker-Mediated DNA Hydrogels
- Publication Year :
- 2019
-
Abstract
- Three-dimensional DNA networks, composed of tri- or higher valent nanostars with sticky, single-stranded DNA overhangs, have been previously studied in the context of designing thermally responsive, viscoelastic hydrogels. In this work, we use linker-mediated gels, where the sticky ends of two trivalent nanostars are connected through the complementary sticky ends of a linear DNA duplex. We can design this connection to be either rigid or flexible by introducing flexible, non-binding bases. The additional flexiblity provided by these non-binding bases influences the effective elasticity of the percolating gel formed at low temperatures. Here we show that by choosing the right length of the linear duplex and non-binding flexible joints, we obtain a completely different phase behaviour to that observed for rigid linkers. In particular, we use dynamic light scattering as microrheological tool to monitor the self-assembly of DNA nanostars with linear linkers as a function of temperature. While we observe classical gelation when using rigid linkers, the presence of flexible joints leads to a cluster fluid with reduced viscosity. Using both the oxDNA model and a coarse-grained simulation to investigate the nanostar-linker topology, we hypothesise on the possible structure formed by the DNA clusters.<br />Comment: 14 pages, 9 figures, 2 tables
- Subjects :
- Physics - Biological Physics
Condensed Matter - Soft Condensed Matter
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1909.05611
- Document Type :
- Working Paper