Back to Search Start Over

Particle Size Effects in Flow-Stabilized Solids

Authors :
Lindauer, Scott
Ortiz, Carlos P.
Riehn, Robert
Daniels, Karen E.
Publication Year :
2019

Abstract

Flow-stabilized solids are a class of fragile matter that forms when a dense suspension of colloids accumulates against a semi-permeable barrier, for flow rates above a critical value. In order to probe the effect of particle size on the formation of these solids, we perform experiments on micron-sized monodisperse spherical polystyrene spheres in a Hele-Shaw geometry. We examine the spatial extent, internal fluctuations, and fluid permeability of the solids deposited against the barrier, and find that these do not scale with the P\'eclet number. Instead, we find distinct behaviors at higher Peclet numbers, suggesting a transition from thermal- to athermal-solids which we connect to particle-scale fluctuations in the liquid-like layer at the upstream surface of the solid. We further observe that while the Carman-Kozeny model does not accurately predict the permeability of flow-stabilized solids, we do find a new scaling which predicts the permeability.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1909.04644
Document Type :
Working Paper