Back to Search
Start Over
Subgroups of $SL_2(\mathbb{Z})$ characterized by certain continued fraction representations
- Source :
- Proc. Amer. Math. Soc. 148 (2020), 3775-3786
- Publication Year :
- 2019
-
Abstract
- For positive integers $u$ and $v$, let $L_u=\begin{bmatrix} 1 & 0 \\ u & 1 \end{bmatrix}$ and $R_v=\begin{bmatrix} 1 & v \\ 0 & 1 \end{bmatrix}$. Let $S_{u,v}$ be the monoid generated by $L_u$ and $R_v$, and $G_{u,v}$ be the group generated by $L_u$ and $R_v$. In this paper we expand on a characterization of matrices $M=\begin{bmatrix}a & b \\c & d\end{bmatrix}$ in $S_{k,k}$ and $G_{k,k}$ when $k\geq 2$ given by Esbelin and Gutan to $S_{u,v}$ when $u,v\geq 2$ and $G_{u,v}$ when $u,v\geq 3$. We give a simple algorithmic way of determining if $M$ is in $G_{u,v}$ using a recursive function and the short continued fraction representation of $b/d$.<br />Comment: Post-comment edits
- Subjects :
- Mathematics - Group Theory
Mathematics - Number Theory
Subjects
Details
- Database :
- arXiv
- Journal :
- Proc. Amer. Math. Soc. 148 (2020), 3775-3786
- Publication Type :
- Report
- Accession number :
- edsarx.1909.00108
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1090/proc/15027