Back to Search Start Over

Probing clumpy wind accretion in IGR J18027-2016 with XMM-Newton

Authors :
Pradhan, Pragati
Bozzo, Enrico
Paul, Biswajit
Manousakis, Antonis
Ferrigno, Carlo
Publication Year :
2019

Abstract

Supergiant X-ray binaries usually comprise a neutron star accreting from the wind of a OB supergiant companion. They are classified as classical systems and the supergiant fast X-ray transients (SFXTs). The different behavior of these sub-classes of sources in X-rays, with SFXTs displaying much more pronounced variability, is usually (at least) partly ascribed to different physical properties of the massive star clumpy stellar wind. In case of SFXTs, a systematic investigation of the effects of clumps on flares/outbursts of these sources has been reported by Bozzo et al. (2017) exploiting the capabilities of the instruments on-board XMM-Newton to perform a hardness-resolved spectral analysis on timescales as short as a few hundreds of seconds. In this paper, we use six XMM-Newton observations of IGR J18027-2016 to extend the above study to a classical supergiant X-ray binary and compare the findings with those derived in the case of SFXTs. As these observations of IGR J18027-2016 span different orbital phases, we also study its X-ray spectral variability on longer timescales and compare our results with previous publications. Although obtaining measurements of the clump physical properties from X-ray observations of accreting supergiant X-ray binaries was already proven to be challenging, our study shows that similar imprints of clumps are found in the X-ray observations of the supergiant fast X-ray transients and at least one classical system, i.e. IGR J18027-2016. This provides interesting perspectives to further extend this study to many XMM-Newton observations already performed in the direction of other classical supergiant X-ray binaries.<br />Comment: 13 pages, 6 figures, 2 tables; Accepted for publication in ApJ

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1908.03582
Document Type :
Working Paper
Full Text :
https://doi.org/10.3847/1538-4357/ab3a40