Back to Search
Start Over
Concentration phenomena for a class of fractional Kirchhoff equations in $\mathbb{R}^{N}$ with general nonlinearities
- Source :
- Nonlinear Analysis 2020
- Publication Year :
- 2019
-
Abstract
- In this paper we study the following class of fractional Kirchhoff problems: \begin{equation*} \left\{ \begin{array}{ll} \varepsilon^{2s}M(\varepsilon^{2s-N}[u]^{2}_{s})(-\Delta)^{s}u + V(x) u= f(u) &\mbox{ in } \mathbb{R}^{N}, \\ u\in H^{s}(\mathbb{R}^{N}), \quad u>0 &\mbox{ in } \mathbb{R}^{N}, \end{array} \right. \end{equation*} where $\varepsilon>0$ is a small parameter, $s\in (0, 1)$, $N\geq 2$, $(-\Delta)^{s}$ is the fractional Laplacian, $V:\mathbb{R}^{N}\rightarrow \mathbb{R}$ is a positive continuous function, $M: [0, \infty)\rightarrow \mathbb{R}$ is a Kirchhoff function satisfying suitable conditions and $f:\mathbb{R}\rightarrow \mathbb{R}$ fulfills Berestycki-Lions type assumptions of subcritical or critical type. Using suitable variational arguments, we prove the existence of a family of positive solutions $(u_{\varepsilon})$ which concentrates at a local minimum of $V$ as $\varepsilon\rightarrow 0$.
- Subjects :
- Mathematics - Analysis of PDEs
Subjects
Details
- Database :
- arXiv
- Journal :
- Nonlinear Analysis 2020
- Publication Type :
- Report
- Accession number :
- edsarx.1907.09302
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.na.2020.111761