Back to Search Start Over

Concentration phenomena for a class of fractional Kirchhoff equations in $\mathbb{R}^{N}$ with general nonlinearities

Authors :
Ambrosio, Vincenzo
Source :
Nonlinear Analysis 2020
Publication Year :
2019

Abstract

In this paper we study the following class of fractional Kirchhoff problems: \begin{equation*} \left\{ \begin{array}{ll} \varepsilon^{2s}M(\varepsilon^{2s-N}[u]^{2}_{s})(-\Delta)^{s}u + V(x) u= f(u) &\mbox{ in } \mathbb{R}^{N}, \\ u\in H^{s}(\mathbb{R}^{N}), \quad u>0 &\mbox{ in } \mathbb{R}^{N}, \end{array} \right. \end{equation*} where $\varepsilon>0$ is a small parameter, $s\in (0, 1)$, $N\geq 2$, $(-\Delta)^{s}$ is the fractional Laplacian, $V:\mathbb{R}^{N}\rightarrow \mathbb{R}$ is a positive continuous function, $M: [0, \infty)\rightarrow \mathbb{R}$ is a Kirchhoff function satisfying suitable conditions and $f:\mathbb{R}\rightarrow \mathbb{R}$ fulfills Berestycki-Lions type assumptions of subcritical or critical type. Using suitable variational arguments, we prove the existence of a family of positive solutions $(u_{\varepsilon})$ which concentrates at a local minimum of $V$ as $\varepsilon\rightarrow 0$.

Subjects

Subjects :
Mathematics - Analysis of PDEs

Details

Database :
arXiv
Journal :
Nonlinear Analysis 2020
Publication Type :
Report
Accession number :
edsarx.1907.09302
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.na.2020.111761