Back to Search Start Over

CO and Fine-Structure Lines Reveal Low Metallicity in a Stellar-Mass-Rich Galaxy at z ~ 1?

Authors :
Lamarche, C.
Stacey, G. J.
Vishwas, A.
Brisbin, D.
Ferkinhoff, C.
Nikola, T.
Higdon, S. J. U.
Higdon, J.
Publication Year :
2019

Abstract

We present detections of the CO(4-3) and [C I] 609 $\mu$m spectral lines, as well as the dust continuum at 480.5 GHz (rest-frame), in 3C 368, a Fanaroff-Riley class II (FR-II) galaxy at redshift (z) 1.131. 3C 368 has a large stellar mass, ~ 3.6 x 10$^{11}$ M$_\odot$, and is undergoing an episode of vigorous star formation, at a rate of ~ 350 M$_\odot$/yr, and active galactic nucleus (AGN) activity, with radio-emitting lobes extended over ~ 73 kpc. Our observations allow us to inventory the molecular-gas reservoirs in 3C 368 by applying three independent methods: (1) using the CO(4-3)-line luminosity, excitation state of the gas, and an $\alpha_{CO}$ conversion factor, (2) scaling from the [C I]-line luminosity, and (3) adopting a gas-to-dust conversion factor. We also present gas-phase metallicity estimates in this source, both using far-infrared (FIR) fine-structure lines together with radio free-free continuum emission and independently employing the optical [O III] 5007 A and [O II] 3727 A lines (R$_{23}$ method). Both methods agree on a sub-solar gas-phase metallicity of ~ 0.3 Z$_\odot$. Intriguingly, comparing the molecular-gas mass estimated using this sub-solar metallicity, M$_{gas}$ ~ 6.4 x 10$^{10}$ M$_\odot$, to dust-mass estimates from multi-component spectral energy distribution (SED) modeling, M$_{dust}$ ~ 1.4 x 10$^8$ M$_\odot$, yields a gas-to-dust ratio within ~ 15% of the accepted value for a metallicity of 0.3 Z$_\odot$. The derived gas-mass puts 3C 368 on par with other galaxies at z ~ 1 in terms of specific star-formation rate and gas fraction. However, it does not explain how a galaxy can amass such a large stellar population while maintaining such a low gas-phase metallicity. Perhaps 3C 368 has recently undergone a merger, accreting pristine molecular gas from an external source.<br />Comment: 10 pages, 5 figures, 2 tables, accepted for publication in the Astrophysical Journal

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1907.08633
Document Type :
Working Paper
Full Text :
https://doi.org/10.3847/1538-4357/ab3389