Back to Search Start Over

Constructive interference in a network of elastically-bounded flapping plates

Authors :
Olivieri, S.
Boragno, C.
Verzicco, R.
Mazzino, A.
Publication Year :
2019

Abstract

Aeroelastic phenomena are gaining significant attention from the perspective of energy harvesting (EH) with promising applications in supplying low-power remote sensors. Besides the development of individual EH devices, further issues are posed when considering multiple objects for realizing arrays of devices and magnifying the extracted power. Due to nonlinear mutual interactions, the resulting dynamics is generally different from that of single devices and the setup optimisation turns out to be nontrivial. In this work, we investigate the problem focusing on a flutter-based EH system consisting of a rigid plate anchored by elastic elements and invested by a uniform laminar flow, undergoing regular limit-cycle oscillations and flapping motions of finite amplitude. We consider a simplified, yet general, physical model and employ three-dimensional direct numerical simulations based on a finite-difference Navier-Stokes solver combined with a moving-least-squares immersed boundary method. Focusing on main kinematic and performance-related quantities, we first report on the dynamics of the single device and then on multiple devices. A parametric exploration is performed by varying the mutual distance between the devices. For the in-line arrangement, a recovery in performance for downstream devices is achieved by tuning their elasticity. Moreover, cooperative effects in the side-by-side arrangement are found to be substantially beneficial in terms of resulting power, with increases (i.e. constructive interference) up to 100% with respect to the single-device configuration. In order to confirm this numerical evidence, complementary results from wind-tunnel experiments are presented. Finally, we describe the system behaviour when increasing further the number of devices, outlining the ultimate goal of developing a high-performance EH network of numerous aeroelastic energy harvesters.

Subjects

Subjects :
Physics - Fluid Dynamics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1907.07494
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.jfluidstructs.2019.07.009