Back to Search Start Over

Duality for Bethe algebras acting on polynomials in anticommuting variables

Authors :
Tarasov, V.
Uvarov, F.
Publication Year :
2019

Abstract

We consider actions of the current Lie algebras $\mathfrak{gl}_{n}[t]$ and $\mathfrak{gl}_{k}[t]$ on the space of polynomials in $kn$ anticommuting variables. The actions depend on parameters $\bar{z}=(z_{1}\dots z_{k})$ and $\bar{\alpha}=(\alpha_{1}\dots \alpha_{n})$, respectively. We show that the images of the Bethe algebras $\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle}\subset U(\mathfrak{gl}_{n}[t])$ and $\mathcal{B}_{\bar{z}}^{\langle k \rangle}\subset U(\mathfrak{gl}_{k}[t])$ under these actions coincide. To prove the statement, we use the Bethe ansatz description of eigenvalues of the actions of the Bethe algebras via spaces of quasi-exponentials and establish an explicit correspondence between these spaces for the actions of $\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle}$ and $\mathcal{B}_{\bar{z}}^{\langle k \rangle}$.<br />Comment: 21 page, 1 figure

Subjects

Subjects :
Mathematics - Quantum Algebra

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1907.02117
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/s11005-020-01329-2