Back to Search
Start Over
Generative approach to unsupervised deep local learning
- Source :
- Journal of Electronic Imaging, 2019
- Publication Year :
- 2019
-
Abstract
- Most existing feature learning methods optimize inflexible handcrafted features and the affinity matrix is constructed by shallow linear embedding methods. Different from these conventional methods, we pretrain a generative neural network by stacking convolutional autoencoders to learn the latent data representation and then construct an affinity graph with them as a prior. Based on the pretrained model and the constructed graph, we add a self-expressive layer to complete the generative model and then fine-tune it with a new loss function, including the reconstruction loss and a deliberately defined locality-preserving loss. The locality-preserving loss designed by the constructed affinity graph serves as prior to preserve the local structure during the fine-tuning stage, which in turn improves the quality of feature representation effectively. Furthermore, the self-expressive layer between the encoder and decoder is based on the assumption that each latent feature is a linear combination of other latent features, so the weighted combination coefficients of the self-expressive layer are used to construct a new refined affinity graph for representing the data structure. We conduct experiments on four datasets to demonstrate the superiority of the representation ability of our proposed model over the state-of-the-art methods.
- Subjects :
- Computer Science - Computer Vision and Pattern Recognition
Subjects
Details
- Database :
- arXiv
- Journal :
- Journal of Electronic Imaging, 2019
- Publication Type :
- Report
- Accession number :
- edsarx.1906.07947
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1117/1.JEI.28.4.043005