Back to Search
Start Over
Multiclass segmentation as multitask learning for drusen segmentation in retinal optical coherence tomography
- Publication Year :
- 2019
-
Abstract
- Automated drusen segmentation in retinal optical coherence tomography (OCT) scans is relevant for understanding age-related macular degeneration (AMD) risk and progression. This task is usually performed by segmenting the top/bottom anatomical interfaces that define drusen, the outer boundary of the retinal pigment epithelium (OBRPE) and the Bruch's membrane (BM), respectively. In this paper we propose a novel multi-decoder architecture that tackles drusen segmentation as a multitask problem. Instead of training a multiclass model for OBRPE/BM segmentation, we use one decoder per target class and an extra one aiming for the area between the layers. We also introduce connections between each class-specific branch and the additional decoder to increase the regularization effect of this surrogate task. We validated our approach on private/public data sets with 166 early/intermediate AMD Spectralis, and 200 AMD and control Bioptigen OCT volumes, respectively. Our method consistently outperformed several baselines in both layer and drusen segmentation evaluations.<br />Comment: Accepted for publication in MICCAI 2019
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1906.07679
- Document Type :
- Working Paper