Back to Search Start Over

A Nonlinear Acceleration Method for Iterative Algorithms

Authors :
Shamsi, Mahdi
Ghandi, Mahmoud
Marvasti, Farokh
Publication Year :
2019

Abstract

Iterative methods have led to better understanding and solving problems such as missing sampling, deconvolution, inverse systems, impulsive and Salt and Pepper noise removal problems. However, the challenges such as the speed of convergence and or the accuracy of the answer still remain. In order to improve the existing iterative algorithms, a non-linear method is discussed in this paper. The mentioned method is analyzed from different aspects, including its convergence and its ability to accelerate recursive algorithms. We show that this method is capable of improving Iterative Method (IM) as a non-uniform sampling reconstruction algorithm and some iterative sparse recovery algorithms such as Iterative Reweighted Least Squares (IRLS), Iterative Method with Adaptive Thresholding (IMAT), Smoothed l0 (SL0) and Alternating Direction Method of Multipliers (ADMM) for solving LASSO problems family (including Lasso itself, Lasso-LSQR and group-Lasso). It is also capable of both accelerating and stabilizing the well-known Chebyshev Acceleration (CA) method. Furthermore, the proposed algorithm can extend the stability range by reducing the sensitivity of iterative algorithms to the changes of adaptation rate.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1906.01595
Document Type :
Working Paper