Back to Search
Start Over
PAC-Bayesian Transportation Bound
- Publication Year :
- 2019
-
Abstract
- Empirically, the PAC-Bayesian analysis is known to produce tight risk bounds for practical machine learning algorithms. However, in its naive form, it can only deal with stochastic predictors while such predictors are rarely used and deterministic predictors often performs well in practice. To fill this gap, we develop a new generalization error bound, the PAC-Bayesian transportation bound, unifying the PAC-Bayesian analysis and the chaining method in view of the optimal transportation. It is the first PAC-Bayesian bound that relates the risks of any two predictors according to their distance, and capable of evaluating the cost of de-randomization of stochastic predictors faced with continuous loss functions. As an example, we give an upper bound on the de-randomization cost of spectrally normalized neural networks (NNs) to evaluate how much randomness contributes to the generalization of NNs.
- Subjects :
- Statistics - Machine Learning
Computer Science - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1905.13435
- Document Type :
- Working Paper