Back to Search
Start Over
Enhancement of laser-driven ion acceleration in non-periodic nanostructured targets
- Publication Year :
- 2019
-
Abstract
- Using particle-in-cell simulations, we demonstrate an improvement of the target normal sheath acceleration (TNSA) of protons in non-periodically nanostructured targets with micron-scale thickness. Compared to standard flat foils, an increase in the proton cutoff energy by up to a factor of two is observed in foils coated with nanocones or perforated with nanoholes. The latter nano-perforated foils yield the highest enhancement, which we show to be robust over a broad range of foil thicknesses and hole diameters. The improvement of TNSA performance results from more efficient hot-electron generation, caused by a more complex laser-electron interaction geometry and increased effective interaction area and duration. We show that TNSA is optimized for a nanohole distribution of relatively low areal density and that is not required to be periodic, thus relaxing the manufacturing constraints.<br />Comment: 11 pages, 8 figures
- Subjects :
- Physics - Plasma Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1905.11131
- Document Type :
- Working Paper