Back to Search Start Over

Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives

Authors :
Tay, Yi
Wang, Shuohang
Tuan, Luu Anh
Fu, Jie
Phan, Minh C.
Yuan, Xingdi
Rao, Jinfeng
Hui, Siu Cheung
Zhang, Aston
Publication Year :
2019

Abstract

This paper tackles the problem of reading comprehension over long narratives where documents easily span over thousands of tokens. We propose a curriculum learning (CL) based Pointer-Generator framework for reading/sampling over large documents, enabling diverse training of the neural model based on the notion of alternating contextual difficulty. This can be interpreted as a form of domain randomization and/or generative pretraining during training. To this end, the usage of the Pointer-Generator softens the requirement of having the answer within the context, enabling us to construct diverse training samples for learning. Additionally, we propose a new Introspective Alignment Layer (IAL), which reasons over decomposed alignments using block-based self-attention. We evaluate our proposed method on the NarrativeQA reading comprehension benchmark, achieving state-of-the-art performance, improving existing baselines by $51\%$ relative improvement on BLEU-4 and $17\%$ relative improvement on Rouge-L. Extensive ablations confirm the effectiveness of our proposed IAL and CL components.<br />Comment: Accepted to ACL 2019

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1905.10847
Document Type :
Working Paper