Back to Search
Start Over
Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives
- Publication Year :
- 2019
-
Abstract
- This paper tackles the problem of reading comprehension over long narratives where documents easily span over thousands of tokens. We propose a curriculum learning (CL) based Pointer-Generator framework for reading/sampling over large documents, enabling diverse training of the neural model based on the notion of alternating contextual difficulty. This can be interpreted as a form of domain randomization and/or generative pretraining during training. To this end, the usage of the Pointer-Generator softens the requirement of having the answer within the context, enabling us to construct diverse training samples for learning. Additionally, we propose a new Introspective Alignment Layer (IAL), which reasons over decomposed alignments using block-based self-attention. We evaluate our proposed method on the NarrativeQA reading comprehension benchmark, achieving state-of-the-art performance, improving existing baselines by $51\%$ relative improvement on BLEU-4 and $17\%$ relative improvement on Rouge-L. Extensive ablations confirm the effectiveness of our proposed IAL and CL components.<br />Comment: Accepted to ACL 2019
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1905.10847
- Document Type :
- Working Paper