Back to Search
Start Over
Temporal Ordered Clustering in Dynamic Networks: Unsupervised and Semi-supervised Learning Algorithms
- Publication Year :
- 2019
-
Abstract
- In temporal ordered clustering, given a single snapshot of a dynamic network in which nodes arrive at distinct time instants, we aim at partitioning its nodes into $K$ ordered clusters $\mathcal{C}_1 \prec \cdots \prec \mathcal{C}_K$ such that for $i<j$, nodes in cluster $\mathcal{C}_i$ arrived before nodes in cluster $\mathcal{C}_j$, with $K$ being a data-driven parameter and not known upfront. Such a problem is of considerable significance in many applications ranging from tracking the expansion of fake news to mapping the spread of information. We first formulate our problem for a general dynamic graph, and propose an integer programming framework that finds the optimal clustering, represented as a strict partial order set, achieving the best precision (i.e., fraction of successfully ordered node pairs) for a fixed density (i.e., fraction of comparable node pairs). We then develop a sequential importance procedure and design unsupervised and semi-supervised algorithms to find temporal ordered clusters that efficiently approximate the optimal solution. To illustrate the techniques, we apply our methods to the vertex copying (duplication-divergence) model which exhibits some edge-case challenges in inferring the clusters as compared to other network models. Finally, we validate the performance of the proposed algorithms on synthetic and real-world networks.<br />Comment: 14 pages, 9 figures, and 3 tables. This version is submitted to a journal. A shorter version of this work is published in the proceedings of IEEE International Symposium on Information Theory (ISIT), 2020. The first two authors contributed equally
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1905.00672
- Document Type :
- Working Paper