Back to Search Start Over

Web Test Dependency Detection

Authors :
Biagiola, Matteo
Stocco, Andrea
Mesbah, Ali
Ricca, Filippo
Tonella, Paolo
Publication Year :
2019

Abstract

E2E web test suites are prone to test dependencies due to the heterogeneous multi-tiered nature of modern web apps, which makes it difficult for developers to create isolated program states for each test case. In this paper, we present the first approach for detecting and validating test dependencies present in E2E web test suites. Our approach employs string analysis to extract an approximated set of dependencies from the test code. It then filters potential false dependencies through natural language processing of test names. Finally, it validates all dependencies, and uses a novel recovery algorithm to ensure no true dependencies are missed in the final test dependency graph. Our approach is implemented in a tool called TEDD and evaluated on the test suites of six open-source web apps. Our results show that TEDD can correctly detect and validate test dependencies up to 72% faster than the baseline with the original test ordering in which the graph contains all possible dependencies. The test dependency graphs produced by TEDD enable test execution parallelization, with a speed-up factor of up to 7x.<br />Comment: 11 pages, published in the Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2019), pp. 154-164

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1905.00357
Document Type :
Working Paper
Full Text :
https://doi.org/10.1145/3338906.3338948