Back to Search Start Over

On Hopf hypersurfaces of the homogeneous nearly K\'ahler $\mathbf{S}^3\times\mathbf{S}^3$

Authors :
Hu, Zejun
Yao, Zeke
Source :
Annali di Matematica Pura ed Applicata (1923 -) 199 (2020),1147-1170
Publication Year :
2019

Abstract

In this paper, extending our previous joint work (Hu et al., Math Nachr 291:343--373, 2018), we initiate the study of Hopf hypersurfaces in the homogeneous NK (nearly K\"ahler) manifold $\mathbf{S}^3\times\mathbf{S}^3$. First, we show that any Hopf hypersurface of the homogeneous NK $\mathbf{S}^3\times\mathbf{S}^3$ does not admit two distinct principal curvatures. Then, for the important class of Hopf hypersurfaces with three distinct principal curvatures, we establish a complete classification under the additional condition that their holomorphic distributions $\{U\}^\perp$ are preserved by the almost product structure $P$ of the homogeneous NK $\mathbf{S}^3\times\mathbf{S}^3$.<br />Comment: 26 pages

Details

Database :
arXiv
Journal :
Annali di Matematica Pura ed Applicata (1923 -) 199 (2020),1147-1170
Publication Type :
Report
Accession number :
edsarx.1904.09638
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/s10231-019-00915-z