Back to Search
Start Over
On Hopf hypersurfaces of the homogeneous nearly K\'ahler $\mathbf{S}^3\times\mathbf{S}^3$
- Source :
- Annali di Matematica Pura ed Applicata (1923 -) 199 (2020),1147-1170
- Publication Year :
- 2019
-
Abstract
- In this paper, extending our previous joint work (Hu et al., Math Nachr 291:343--373, 2018), we initiate the study of Hopf hypersurfaces in the homogeneous NK (nearly K\"ahler) manifold $\mathbf{S}^3\times\mathbf{S}^3$. First, we show that any Hopf hypersurface of the homogeneous NK $\mathbf{S}^3\times\mathbf{S}^3$ does not admit two distinct principal curvatures. Then, for the important class of Hopf hypersurfaces with three distinct principal curvatures, we establish a complete classification under the additional condition that their holomorphic distributions $\{U\}^\perp$ are preserved by the almost product structure $P$ of the homogeneous NK $\mathbf{S}^3\times\mathbf{S}^3$.<br />Comment: 26 pages
- Subjects :
- Mathematics - Differential Geometry
53B25, 53B35, 53C30, 53C42
Subjects
Details
- Database :
- arXiv
- Journal :
- Annali di Matematica Pura ed Applicata (1923 -) 199 (2020),1147-1170
- Publication Type :
- Report
- Accession number :
- edsarx.1904.09638
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1007/s10231-019-00915-z