Back to Search
Start Over
Causal Embeddings for Recommendation: An Extended Abstract
- Publication Year :
- 2019
-
Abstract
- Recommendations are commonly used to modify user's natural behavior, for example, increasing product sales or the time spent on a website. This results in a gap between the ultimate business objective and the classical setup where recommendations are optimized to be coherent with past user behavior. To bridge this gap, we propose a new learning setup for recommendation that optimizes for the Incremental Treatment Effect (ITE) of the policy. We show this is equivalent to learning to predict recommendation outcomes under a fully random recommendation policy and propose a new domain adaptation algorithm that learns from logged data containing outcomes from a biased recommendation policy and predicts recommendation outcomes according to random exposure. We compare our method against state-of-the-art factorization methods, in addition to new approaches of causal recommendation and show significant improvements.<br />Comment: Accepted to the International Joint Conferences on Artificial Intelligence (IJCAI) Sister Conference Best Paper Track
- Subjects :
- Computer Science - Information Retrieval
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1904.05165
- Document Type :
- Working Paper