Back to Search Start Over

Metric dimension of maximal outerplanar graphs

Authors :
Claverol, Mercè
García, Alfredo
Hernández, Greogorio
Hernando, Carmen
Maureso, Montserrat
Mora, Mercè
Tejel, Javier
Source :
Bull. Malays. Math. Sci. Soc. (2021) 44:2603-2630
Publication Year :
2019

Abstract

In this paper, we study the metric dimension problem in maximal outerplanar graphs. Concretely, if $\beta (G)$ is the metric dimension of a maximal outerplanar graph $G$ of order $n$, we prove that $2\le \beta (G) \le \lceil \frac{2n}{5}\rceil$ and that the bounds are tight. We also provide linear algorithms to decide whether the metric dimension of $G$ is 2 and to build a resolving set of size $\lceil \frac{2n}{5}\rceil$ for $G$. Moreover, we characterize the maximal outerplanar graphs with metric dimension 2.<br />Comment: 25 pages, 16 figures

Details

Database :
arXiv
Journal :
Bull. Malays. Math. Sci. Soc. (2021) 44:2603-2630
Publication Type :
Report
Accession number :
edsarx.1903.11933
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/s40840-020-01068-6