Back to Search Start Over

Diversifying Reply Suggestions using a Matching-Conditional Variational Autoencoder

Authors :
Deb, Budhaditya
Bailey, Peter
Shokouhi, Milad
Publication Year :
2019

Abstract

We consider the problem of diversifying automated reply suggestions for a commercial instant-messaging (IM) system (Skype). Our conversation model is a standard matching based information retrieval architecture, which consists of two parallel encoders to project messages and replies into a common feature representation. During inference, we select replies from a fixed response set using nearest neighbors in the feature space. To diversify responses, we formulate the model as a generative latent variable model with Conditional Variational Auto-Encoder (M-CVAE). We propose a constrained-sampling approach to make the variational inference in M-CVAE efficient for our production system. In offline experiments, M-CVAE consistently increased diversity by ~30-40% without significant impact on relevance. This translated to a 5% gain in click-rate in our online production system.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1903.10630
Document Type :
Working Paper