Back to Search
Start Over
Trainable Time Warping: Aligning Time-Series in the Continuous-Time Domain
- Publication Year :
- 2019
-
Abstract
- DTW calculates the similarity or alignment between two signals, subject to temporal warping. However, its computational complexity grows exponentially with the number of time-series. Although there have been algorithms developed that are linear in the number of time-series, they are generally quadratic in time-series length. The exception is generalized time warping (GTW), which has linear computational cost. Yet, it can only identify simple time warping functions. There is a need for a new fast, high-quality multisequence alignment algorithm. We introduce trainable time warping (TTW), whose complexity is linear in both the number and the length of time-series. TTW performs alignment in the continuous-time domain using a sinc convolutional kernel and a gradient-based optimization technique. We compare TTW and GTW on 85 UCR datasets in time-series averaging and classification. TTW outperforms GTW on 67.1% of the datasets for the averaging tasks, and 61.2% of the datasets for the classification tasks.<br />Comment: ICASSP 2019
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1903.09245
- Document Type :
- Working Paper