Back to Search Start Over

Gaussian wave packet transform based numerical scheme for the semi-classical Schr\'odinger equation with random inputs

Authors :
Jin, Shi
Liu, Liu
Russo, Giovanni
Zhou, Zhennan
Publication Year :
2019

Abstract

In this work, we study the semi-classical limit of the Schr\"odinger equation with random inputs, and show that the semi-classical Schr\"odinger equation produces $O(\varepsilon)$ oscillations in the random variable space. With the Gaussian wave packet transform, the original Schr\"odinger equation is mapped to an ODE system for the wave packet parameters coupled with a PDE for the quantity $w$ in rescaled variables. Further, we show that the $w$ equation does not produce $\varepsilon$ dependent oscillations, and thus it is more amenable for numerical simulations. We propose multi-level sampling strategy in implementing the Gaussian wave packet transform, where in the most costly part, i.e. simulating the $w$ equation, it is sufficient to use $\varepsilon$ independent samples. We also provide extensive numerical tests as well as meaningful numerical experiments to justify the properties of the numerical algorithm, and hopefully shed light on possible future directions.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1903.08740
Document Type :
Working Paper