Back to Search Start Over

A close look at the dwarf AGN of NGC 4395: optical and near-IR integral field spectroscopy

Authors :
Brum, Carine
Diniz, Marlon R.
Riffel, Rogemar A.
Rodriguez-Ardila, Alberto
Ho, Luis
Riffel, Rogerio
Mason, Rachel
Martins, Lucimara
Petric, Andreea
Sanchez-Janssen, Ruben
Publication Year :
2019

Abstract

Intermediate mass black holes (10$^3$-10$^5$ M$_\odot$) in the center of dwarf galaxies are believed to be analogous to growing Active Galactic Nuclei (AGN) in the early Universe. Their characterization can provide insight about the early galaxies. We present optical and near-infrared integral field spectroscopy of the inner $\sim$50 pc of the dwarf galaxy NGC4395, known to harbor an AGN. NGC 4395 is an ideal candidate to investigate the nature of dwarf AGN, as it is nearby ($d\approx4.4$ Mpc) enough to allow a close look at its nucleus. The optical data were obtained with the Gemini GMOS-IFU covering the 4500 A to 7300 A spectral range at a spatial resolution of 10 pc. The J and K-band spectra were obtained with the Gemini NIFS at spatial resolutions of $\sim$5 pc. The gas kinematics show a compact, rotation disk component with a projected velocity amplitude of 25 km s$^{-1}$. We estimate a mass of $7.7\times10^5$ M$_\odot$ inside a radius of 10 pc. From the H$\alpha$ broad line component, we estimate the AGN bolometric luminosity as $L_{ bol}=(9.9\pm1.4)\times10^{40}$ erg s$^{-1}$ and a mass $M_{ BH}=(2.5^{+1.0}_{-0.8})\times10^5$ M$_\odot$ for the central black hole. The mean surface mass densities for the ionized and molecular gas are in the ranges (1-2) M$_{\odot} $pc$^{-2}$ and (1-4)$\times10^{-3}$ M${_\odot}$ pc$^{-2}$ and the average ratio between ionized and hot molecular gas masses is $\sim$500. The emission-line flux distributions reveal an elongated structure at 24 pc west of the nucleus, which is blueshifted relative to the systemic velocity of the galaxy by $\approx$30 km s$^{-1}$. We speculate that this structure is originated by the accretion of a gas-rich small satellite or by a low metallicity cosmic cloud.<br />Comment: 19 pages, 13 figures, accepted for publication in MNRAS

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1903.08083
Document Type :
Working Paper
Full Text :
https://doi.org/10.1093/mnras/stz893