Back to Search Start Over

Counting Classical Nodes in Quantum Networks

Authors :
Lu, He
Huang, Chien-Ying
Li, Zheng-Da
Yin, Xu-Fei
Zhang, Rui
Liao, Teh-Lu
Chen, Yu-Ao
Li, Che-Ming
Pan, Jian-Wei
Source :
Phys. Rev. Lett. 124, 180503 (2020)
Publication Year :
2019

Abstract

Quantum networks illustrate the use of connected nodes of quantum systems as the backbone of distributed quantum information processing. When the network nodes are entangled in graph states, such a quantum platform is indispensable to almost all the existing distributed quantum tasks. Unfortunately, real networks unavoidably suffer from noise and technical restrictions, making nodes transit from quantum to classical at worst. Here, we introduce a figure of merit in terms of the number of classical nodes for quantum networks in arbitrary graph states. Such a network property is revealed by exploiting a novel Einstein-Podolsky-Rosen steerability. Experimentally, we demonstrate photonic quantum networks of $n_q$ quantum nodes and $n_c$ classical nodes with $n_q$ up to 6 and $n_c$ up to 18 using spontaneous parametric down-conversion entanglement sources. We show that the proposed method is faithful in quantifying the classical defects in prepared multiphoton quantum networks. Our results provide novel identification of generic quantum networks and nonclassical correlations in graph states.

Subjects

Subjects :
Quantum Physics

Details

Database :
arXiv
Journal :
Phys. Rev. Lett. 124, 180503 (2020)
Publication Type :
Report
Accession number :
edsarx.1903.07858
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevLett.124.180503