Back to Search
Start Over
Stable determination of a vector field in a non-self-adjoint dynamical Schr\'odinger equation on Riemannian manifolds
- Publication Year :
- 2019
-
Abstract
- This paper deals with an inverse problem for a non-self-adjoint Schr\"odinger equation on a compact Riemannian manifold. Our goal is to stably determine a real vector field from the dynamical Dirichlet-to Neumann map. We establish in dimension n greater than 2, an H\"older type stability estimate for the inverse problem under study. The proof is mainly based on the reduction to an equivalent problem for an electro-magnetic Schr\"odinger equation and the use of a Carleman estimate designed for elliptic operators.
- Subjects :
- Mathematics - Analysis of PDEs
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1903.07039
- Document Type :
- Working Paper